
1079 A Careful Approach
If you think participating in a programming contest is stressful, imagine being an air traffic controller.
With human lives at stake, an air traffic controller has to focus on tasks while working under constantly
changing conditions as well as dealing with unforeseen events.

Consider the task of scheduling the airplanes that are landing at an airport. Incoming airplanes
report their positions, directions, and speeds, and then the controller has to devise a landing schedule
that brings all airplanes safely to the ground. Generally, the more time there is between successive
landings, the “safer” a landing schedule is. This extra time gives pilots the opportunity to react to
changing weather and other surprises.

Luckily, part of this scheduling task can be automated - this is where you come in. You will be given
scenarios of airplane landings. Each airplane has a time window during which it can safely land. You
must compute an order for landing all airplanes that respects these time windows. Furthermore, the
airplane landings should be stretched out as much as possible so that the minimum time gap between
successive landings is as large as possible. For example, if three airplanes land at 10:00am, 10:05am,
and 10:15am, then the smallest gap is five minutes, which occurs between the first two airplanes. Not
all gaps have to be the same, but the smallest gap should be as large as possible.

Input
The input file contains several test cases consisting of descriptions of landing scenarios. Each test case
starts with a line containing a single integer n (2 ≤ n ≤ 8), which is the number of airplanes in the
scenario. This is followed by n lines, each containing two integers ai, bi, which give the beginning and
end of the closed interval [ai, bi] during which the i-th plane can land safely. The numbers ai and bi are
specified in minutes and satisfy 0 ≤ ai ≤ bi ≤ 1440.

The input is terminated with a line containing the single integer zero.

Output
For each test case in the input, print its case number (starting with 1) followed by the minimum
achievable time gap between successive landings. Print the time split into minutes and seconds, rounded
to the closest second. Follow the format of the sample output.

Sample Input
3
0 10
5 15
10 15
2
0 10
10 20
0

Sample Output
Case 1: 7:30
Case 2: 20:00

1729 Owllen
Wise owl has got a string S with N (1 ≤ N ≤ 105) characters. All the characters of S are lowercase
English letters. Now she challenges Fallen to find out a string T of length N such that the length of the
LCS (Longest Common Subsequence) of S and T is minimum. T also should be consisted of lowercase
English letters only.

Now it iss Fallen’s problem to find out the string T . But you ou need to print the minimum length
of such LCS given that Fallen has found T correctly.

Input
Input file starts with a single integer T (1 ≤ T ≤ 50), T test cases following. Each of the next T test
cases has one string S on a line.

Output
For each case print your output in format, ‘Case X: Y ’, on a single line where X denotes the case
number starting from 1 and Y denotes the length of the shortest possible LCS.

Sample Input
2
ab
efzadeuopqxrvwxaghijklmnbcastbqy

Sample Output
Case 1: 0
Case 2: 1

10271 Chopsticks
In China, people use a pair of chopsticks to get food on the table, but Mr. L is a bit different. He uses
a set of three chopsticks – one pair, plus an EXTRA long chopstick to get some big food by piercing
it through the food. As you may guess, the length of the two shorter chopsticks should be as close as
possible, but the length of the extra one is not important, as long as it’s the longest. To make things
clearer, for the set of chopsticks with lengths A, B, C (A ≤ B ≤ C), (A− B)2 is called the “badness”
of the set.

It’s December 2nd, Mr.L’s birthday! He invited K people to join his birthday party, and would like
to introduce his way of using chopsticks. So, he should prepare K + 8 sets of chopsticks(for himself,
his wife, his little son, little daughter, his mother, father, mother-in-law, father-in-law, and K other
guests). But Mr.L suddenly discovered that his chopsticks are of quite different lengths! He should find
a way of composing the K + 8 sets, so that the total badness of all the sets is minimized.

Input
The first line in the input contains a single integer T , indicating the number of test cases (1 ≤ T ≤ 20).
Each test case begins with two integers K, N (0 ≤ K ≤ 1000, 3K + 24 ≤ N ≤ 5000), the number of
guests and the number of chopsticks.

There are N positive integers Li on the next line in non–decreasing order indicating the lengths of
the chopsticks (1 ≤ Li ≤ 32000).

Output
For each test case in the input, print a line containing the minimal total badness of all the sets.

Note: For the sample input, a possible collection of the 9 sets is:
8,10,16; 19,22,27; 61,63,75; 71,72,88; 81,81,84; 96,98,103; 128,129,148; 134,134,139; 157,157,160

Sample Input
1
1 40
1 8 10 16 19 22 27 33 36 40 47 52 56 61 63 71 72 75 81 81 84 88 96 98
103 110 113 118 124 128 129 134 134 139 148 157 157 160 162 164

Sample Output
23

10409 Die Game
Life is not easy. Sometimes it is beyond your control. Now, as contestants of
ACM ICPC, you might be just tasting the bitter of life. But don’t worry! Do
not look only on the dark side of life, but look also on the bright side. Life
may be an enjoyable game of chance, like throwing dice. Do or die! Then, at
last, you might be able to find the route to victory.

This problem comes from a game using a die. By the way, do you know a
die? It has nothing to do with ”death.” A die is a cubic object with six faces,
each of which represents a different number from one to six and is marked
with the corresponding number of spots. Since it is usually used in pair, ”a
die” is a rarely used word. You might have heard a famous phrase ”the die is cast,” though.

When a game starts, a die stands still on a flat table. During the game, the die is tumbled in all
directions by the dealer. You will win the game if you can predict the number seen on the top face at
the time when the die stops tumbling.

Now you are requested to write a program that simulates the rolling of a die. For simplicity, we
assume that the die neither slips nor jumps but just rolls on the table in four directions, that is, north,
east, south, and west. At the beginning of every game, the dealer puts the die at the center of the
table and adjusts its direction so that the numbers one, two, and three are seen on the top, north, and
west faces, respectively. For the other three faces, we do not explicitly specify anything but tell you
the golden rule: the sum of the numbers on any pair of opposite faces is always seven.

Your program should accept a sequence of commands, each of which is either “north”, “east”,
“south”, or “west”. A “north” command tumbles the die down to north, that is, the top face becomes
the new north, the north becomes the new bottom, and so on. More precisely, the die is rotated around
its north bottom edge to the north direction and the rotation angle is 90 degrees. Other commands also
tumble the die accordingly to their own directions. Your program should calculate the number finally
shown on the top after performing the commands in the sequence. Note that the table is sufficiently
large and the die never falls off during the game.

Input
The input consists of one or more command sequences, each of which corresponds to a single game. The
first line of a command sequence contains a positive integer, representing the number of the following
command lines in the sequence. You may assume that this number is less than or equal to 1024. A line
containing a zero indicates the end of the input. Each command line includes a command that is one
of ‘north’, ‘east’, ‘south’, and ‘west’. You may assume that no white space occurs in any lines.

Output
For each command sequence, output one line containing solely the number on the top face at the time
when the game is finished.

Sample Input
1
north
3
north

Universidad de Valladolid OJ: 10409 – Die Game 2/2

east
south
0

Sample Output
5
1

11624 Fire!
Joe works in a maze. Unfortunately, portions of the maze have caught
on fire, and the owner of the maze neglected to create a fire escape plan.
Help Joe escape the maze.

Given Joe’s location in the maze and which squares of the maze are
on fire, you must determine whether Joe can exit the maze before the
fire reaches him, and how fast he can do it.

Joe and the fire each move one square per minute, vertically or
horizontally (not diagonally). The fire spreads all four directions from
each square that is on fire. Joe may exit the maze from any square
that borders the edge of the maze. Neither Joe nor the fire may enter
a square that is occupied by a wall.

Input
The first line of input contains a single integer, the number of test cases
to follow. The first line of each test case contains the two integers R
and C, separated by spaces, with 1 ≤ R,C ≤ 1000. The following R lines of the test case each contain
one row of the maze. Each of these lines contains exactly C characters, and each of these characters is
one of:

• #, a wall

• ., a passable square

• J, Joe’s initial position in the maze, which is a passable square

• F, a square that is on fire

There will be exactly one J in each test case.

Output
For each test case, output a single line containing ‘IMPOSSIBLE’ if Joe cannot exit the maze before the
fire reaches him, or an integer giving the earliest time Joe can safely exit the maze, in minutes.

Sample Input
2
4 4
####
#JF#
#..#
#..#
3 3
###
#J.
#.F

Universidad de Valladolid OJ: 11624 – Fire! 2/2

Sample Output
3
IMPOSSIBLE

12125 March of the Penguins

A sample layout of ice floes with 3
penguins on them.

Somewhere near the south pole, a number of penguins are stand-
ing on a number of ice floes. Being social animals, the penguins
would like to get together, all on the same floe. The penguins do
not want to get wet, so they have use their limited jump distance
to get together by jumping from piece to piece. However, tem-
peratures have been high lately, and the floes are showing cracks,
and they get damaged further by the force needed to jump to an-
other floe. Fortunately the penguins are real experts on cracking
ice floes, and know exactly how many times a penguin can jump
off each floe before it disintegrates and disappears. Landing on
an ice floe does not damage it. You have to help the penguins
find all floes where they can meet.

Input

On the first line one positive number: the number of testcases, at
most 100. After that per testcase:

• One line with the integer N (1 ≤ N ≤ 100) and a floating-point number D (0 ≤ D ≤ 100000),
denoting the number of ice pieces and the maximum distance a penguin can jump.

• N lines, each line containing xi, yi, ni and mi, denoting for each ice piece its X and Y coordinate,
the number of penguins on it and the maximum number of times a penguin can jump off this
piece before it disappears (−10000 ≤ xi, yi ≤ 10000, 0 ≤ ni ≤ 10, 1 ≤ mi ≤ 200).

Output

Per testcase:

• One line containing a space-separated list of 0-based indices of the pieces on which all penguins
can meet. If no such piece exists, output a line with the single number ‘-1’.

Sample Input

2

5 3.5

1 1 1 1

2 3 0 1

3 5 1 1

5 1 1 1

5 4 0 1

3 1.1

-1 0 5 10

0 0 3 9

2 0 1 1

Universidad de Valladolid OJ: 12125 – March of the Penguins 2/2

Sample Output

1 2 4

-1

12333 Revenge of Fibonacci
The well-known Fibonacci sequence is defined as following:

F (0) = F (1) = 1

F (n) = F (n− 1) + F (n− 2) ∀n ≥ 2

Here we regard n as the index of the Fibonacci number F (n).
This sequence has been studied since the publication of Fibonacci’s book Liber Abaci. So far, many

properties of this sequence have been introduced.
You had been interested in this sequence, while after reading lots of papers about it. You think

there’s no need to research in it anymore because of the lack of its unrevealed properties. Yesterday,
you decided to study some other sequences like Lucas sequence instead.

Fibonacci came into your dream last night. “Stupid human beings. Lots of important properties
of Fibonacci sequence have not been studied by anyone, for example, from the Fibonacci number
347746739...”

You woke up and couldn’t remember the whole number except the first few digits Fibonacci told
you. You decided to write a program to find this number out in order to continue your research on
Fibonacci sequence.

Input
There are multiple test cases. The first line of input contains a single integer T denoting the number
of test cases (T ≤ 50000).

For each test case, there is a single line containing one non-empty string made up of at most 40
digits. And there won’t be any unnecessary leading zeroes.

Output
For each test case, output the smallest index of the smallest Fibonacci number whose decimal notation
begins with the given digits. If no Fibonacci number with index smaller than 100000 satisfy that
condition, output ‘-1’ instead — you think what Fibonacci wants to told you beyonds your ability.

Sample Input
15
1
12
123
1234
12345
9
98
987
9876
98765
89
32
51075176167176176176

Universidad de Valladolid OJ: 12333 – Revenge of Fibonacci 2/2

347746739
5610

Sample Output
Case #1: 0
Case #2: 25
Case #3: 226
Case #4: 1628
Case #5: 49516
Case #6: 15
Case #7: 15
Case #8: 15
Case #9: 43764
Case #10: 49750
Case #11: 10
Case #12: 51
Case #13: -1
Case #14: 1233
Case #15: 22374

12952 Tri-du
Tri-du is a card game inspired in the popular game of Truco. The game uses a normal deck of 52 cards,
with 13 cards of each suit, but suits are ignored. What is used is the value of the cards, considered as
integers between 1 to 13.

In the game, each player gets three cards. The rules are simple:

• A Three of a Kind (three cards of the same value) wins over a Pair (two cards of the same value).

• A Three of a Kind formed by cards of a larger value wins over a Three of a Kind formed by cards
of a smaller value.

• A Pair formed by cards of a larger value wins over a Pair formed by cards of a smaller value.

Note that the game may not have a winner in many situations; in those cases, the cards are returned
to the deck, which is re-shuffled and a new game starts.

A player received already two of the three cards, and knows their values. Your task is to write a
program to determine the value of the third card that maximizes the probability of that player winning
the game.

Input
The input contains several test cases. In each test case, the input consists of a single line, which contains
two integers A (1 ≤ A ≤ 13) and B (1 ≤ B ≤ 13) that indicates the value of the two first received
cards.

Output
For each test case in the input, your program must produce a single line, containing exactly one integer,
representing the value of the card that maximizes the probability of the player winning the game.

Sample Input
10 7
2 2

Sample Output
10
2

13076 The traveller squirrel
The popular legend says that in the book Geography, written in the first
century B.C., the Greek geographer Strabo said that vegetation on the
Iberian Peninsula was so dense that a squirrel could cross it from the
south to the north jumping from tree to tree without ever touching the
ground.

Apparently, Strabo never affirmed such a thing in his book and, in
fact, nowadays it is believed that the great achievement of the squirrel
wasn’t even possible back then.

However, let our imagination fly for a while and think that there
was in fact a time in which the number of trees in the Peninsula was
large enough to make the achievement possible. Considering that today
this is not possible anymore, it is clear that at some point in the past a
tree was cut down and caused the separation between the north region
and the south region, making it impossible for squirrels to jump from
branch to branch.

To simplify the problem slightly, let’s assume that the territory is
a squared region of size N ×M in which trees (considered of thickness
0) are placed in positions (x, y). The task of the squirrel is to go from the tree in the position (0, 0) to
the one in (N,M). You can assume that there is always a tree in both of them. The squirrel can jump
from one tree to another if the distance between the two of them does not exceed K units.

The information we have about the territory are the positions of all the trees in the beginning of
times. We have to determine the position of the tree that, when cut down, stopped the squirrel from
travelling from one part to the other without touching the ground.

Input
Each test case consists of several lines. The first of them contains N , M , K and n (1 ≤ N,M ≤ 1, 000;
1 ≤ K ≤ 10; 1 ≤ n ≤ 100, 000), where N , M and K have the meaning described previously and
n indicates the number of trees in the territory (without counting the trees in the origin and the
destination of the squirrel’s journey, which are always present).

After that, there is a line for each of the trees with two integers x, y (the position of the tree). The
order in which they are given is the same order followed to cut them down. It is guaranteed that all
the positions are inside the territory and that two trees are never placed in the same position.

Output
For each test case, write a single line with the position of the first tree that made the two corners of
the field to be unreachable for the squirrel.

If it was never possible for the squirrel to cross the Peninsula from one part to the other, output
‘Never had the chance’.

Sample Input
3 3 2 4
1 1
2 2

Universidad de Valladolid OJ: 13076 – The traveller squirrel 2/2

2 0
3 1
3 3 2 2
3 0
0 3

Sample Output
2 0
Never had the chance

13117 ACIS, A Contagious vIruS
Scientists from REDIS (REsearch of DISeases), a famous investigation center in Raccoon City, acci-
dentally caused the mutation of a very contagious virus known as ACIS (A Contagious vIruS), just
when they were manipulating ACIS’ DNA. Raphael, the main researcher at REDIS, was infected with
ACIS while he was treating inoculated rats. After that, all persons at REDIS were infected in less
than an hour. Immediately he discovered the issue, Raphael contacted the Major, who decided to
quarantine the largest possible circular region centered at REDIS that is totally inside Raccoon City,
whose boundaries are described with a polygon.

The Major wants to know the maximum radius of such circular region. Can you help him?

Input
The input consists of several test cases. The first line of a test case contains a single integer N indicating
the number of vertices of the polygon describing the boundaries of Raccoon City (3 ≤ N ≤ 16). The
second line of a test case contains two blank-separated integers xR and yR (0 ≤ xR ≤ 50, 0 ≤ yR ≤ 50)
indicating the position (xR, yR) where REDIS is located. Then follow N lines: line i contains exactly
two blank-separated integers xi and yi, where (xi, yi) is the position of the i-th vertex of the polygon
describing the boundaries of Raccoon City (0 ≤ xi ≤ 50, 0 ≤ yi ≤ 50). You may assume that there are
not two vertices located at the same position, and that REDIS is located inside the polygon excluding
its boundaries. The input ends with a line containing a single asterisk (‘*’).

Output
For each test case, print a single line with a number indicating the radius of the largest possible circular
region centered at REDIS that is totally inside Raccoon City. The answer should be formatted and
approximated to three decimal places. The floating point delimiter must be ‘.’ (i.e., the dot). The
rounding applies towards the nearest neighbor unless both neighbors are equidistant, in which case
the result is rounded up (e.g., 78.3712 is rounded to 78.371; 78.5766 is rounded to 78.577; 78.3745 is
rounded to 78.375, etc.).

Sample Input
12
2 2
0 1
1 1
2 0

Universidad de Valladolid OJ: 13117 – ACIS, A Contagious vIruS 2/2

3 0
3 1
4 2
3 3
3 4
2 4
1 3
0 3
1 2
4
2 2
0 2
2 0
4 2
2 4
*

Sample Output
1.000
1.414

